Current research projects

Einstein-Elevator

  • Ultrasonic levitation as a handling tool for ISM processes
    The joint project Lev4ISM pursues the development of an innovative, resource-saving manufacturing process for In-Space Manufacturing (ISM), which aims to enable the substrate-free production of components in microgravity. By using acoustic levitation and implementing coupled simulations, the precise handling of particles and components in microgravity will be researched to create long-term solutions for sustainable and flexible space missions.
    Led by: M. Sc. Jan Raffel
    Year: 2023
    Funding: German Aerospace Center (DLR)
    Duration: 09/01/2023 to 08/31/2025
  • Levitated Magnets for Quantum Metrology
    This project aims at a systematic investigation of sensors based on levitated micromagnets, which allow to measure ultra-low torques and magnetic fields, demonstrating an unprecedented energy resolution.
    Led by: M. Sc. Alexander Heidt
    Year: 2022
    Funding: QuantERA Project of the EU (DFG)
    Duration: 01.01.2022 - 31.12.2024
  • Activity of comets under partial gravity
    Cometary activity, which in this case refers to the ejection of dust from the surface, can be simulated in the laboratory, but more than a thousand times Earth's gravity overrides the gravity prevailing on comets. With the help of the Einstein-Elevator it will be possible to perform experiments under comet-like conditions.
    Led by: M. Sc. Emre Tahtali
    Year: 2022
    Funding: German Aerospace Center (DLR)
    Duration: 01.08.2022 - 31.07.2025
  • Hannover Center for Microgravity Research
    The focus of the DFG-funded research center "Hannover Center for Microgravity Research" is the establishment of an administrative service and management structure for the Einstein-Elevator. This should enable effective use of the Einstein-Elevator, also for external scientists.
    Led by: Dr.-Ing. Christoph Lotz
    Year: 2022
    Funding: DFG
    Duration: 01.01.2022 - 31.12.2024
  • Laser-based additive manufacturing of metal parts from powder in microgravity
    The aim of this research project is the development of a laser-based additive manufacturing process for the production of metal parts from powder in microgravity. The approach is based on the "Laser Metal Deposition" (LMD) process known for earth gravity.
    Led by: M. Sc. Marvin Raupert
    Year: 2021
    Funding: DFG
    Duration: 07.2021 bis 06.2024
  • Dark Energy Search with Atom Interferometry in the Einstein-Elevator
    The collaboration DESIRE uses the free-fall simulator Einstein-Elevator for dark energy search with atom interferometry. For this purpose the apparatus MAIUS-A will be reconstructed with a specialized test mass and afterwards operated in microgravity.
    Led by: M. Sc. Alexander Heidt
    Year: 2021
    Funding: German Aerospace Center (DLR)
    Duration: 01.04.2021 - 31.03.2024
  • Experiment carrier for the Einstein-Elevator
    An essential Component of the Einstein-Elevator at the Hannover Institute of Technology (HITec) is an experiment carrier, that is used inside the Einstein-Elevators gondola. In collaboration with the German Aerospace Center (DLR), the Institute for Transport and Automation Technology is developing a low-vibration carrier. The aim is to use the system to carry out various experiments under microgravity.
    Led by: M. Sc. Richard Sperling
    Year: 2020
    Funding: DLR-SI
    Duration: 08.2020-07.2023
  • Cold Plasma in ZeroG
    The height dependence of the plasma conditions and the height dependence of the dynamics of charged microparticles inserted into the plasma are to be investigated in the Einstein-Elevator in a plasma chamber. To this end, the movements of the microparticles during the transition from 1 g to 0 g in the Einstein-Elevator are to be analyzed.
    Led by: Dr.-Ing. Christoph Lotz
    Year: 2019
    Funding: German Aerospace Center (DLR)
  • Setup of an active drop tower
    As part of the establishment of the Hannover Institute of Technology (HITec), an active drop tower, the Einstein-Elevator is being set up by the Institute of Transport and Automation Technology (ITA). The design, development and construction of the facility are being carried out in collaboration with the QUEST Leibniz Research School (QUEST-LFS) and the Institute of Quantum Optics (IQ). The aim is to be able to carry out experiments under conditions of microgravity, but also under different partial gravity conditions such as those on the Moon or Mars.
    Led by: Dipl.-Ing. Christoph Lotz
    Year: 2011
    Funding: DFG und Land Niedersachsen (Projektträger)
    Duration: since 10/2011